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The Fractal Nature of Molecular 
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The scaled lengths of molecular trajectories obtained by molecular dynamics 
simulation of a hard-sphere fluid are shown to have the same fractal dimension 
D = 2 as the random walk. Self-similarity first appears on length scales typically 
a factor of 25 greater than the mean free-path length, whereas for the simple 
random walk with constant step size the onset occurs after only six steps; the 
reason for the slow convergence is shown to be the near exponential distribution 
of intercollision path lengths of the fluid molecules. The influence of density on 
the scaled path lengths is also discussed. 
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1. INTRODUCTION 

The concept of fractal dimension as an aid to classifying the morphology of 
natural phenomena that display statistical self-similarity over a range of 
length scales is now firmly established. (1~ Brownian motion is an example 
of a self-similar process~ although the molecules of a (classical) fluid 
follow trajectories that are in principal prescribed by deterministic 
equations of motion, the fact that the neighborhood of a given molecule 
undergoes continual rapid change results in a trajectory that, to the 
macroscopic observer, resembles a random walk. The average motion of 
the molecule is in fact governed by the diffusion equation and thus its 
mean-square displacement grows linearly with time; this characteristic of 
the motion corresponds to a fractal dimension D = 2 for the path mapped 
out in space by the molecule. 
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The subject of the present paper is the direct measurement of D for the 
trajectories obtained by computer simulation of a hard-sphere fluid. The 
motivation for undertaking a study of this nature was a recent report (2) 
that claimed to obtain a fractal dimension other than 2 (actually 1.65) for 
molecular motion in a fluid in a particular thermodynamic state; this in 
turn led to the suggestion that the fractal dimension is in fact a state 
variable of the fluid. 

The main conclusion of this paper, a preliminary report of which has 
appeared elsewhere, ~3~ is that the result D = 2 is indeed the correct one; the 
reason an alternative value was obtained lies in the relatively short trajec- 
tory length on which the measurements were based and the consequent 
lack of a sufficiently broad range of length scales over which observation of 
self-similarity is at all possible. The reason behind the slow convergence to 
self-similarity is also discussed and i t  is concluded that it is the 
approximate negative exponential distribution of free-path lengths between 
collisions that is responsible; synthesized random walks with this step dis- 
tribution converge much more slowly than walks with steps of constant 
length. 

2. THE LENGTH OF A MOLECULAR TRAJECTORY 

A prerequisite to determining the length of the continuous but very 
jagged path taken by a fluid molecule over a given time interval is the 
specification of the measurement technique to be used. Several such techni- 
ques have been proposed, (1) the most straightforward of which is opening a 
pair of dividers to a separation q--the "yardstick" length or length 
scale--and walking the dividers along the path in such a way that each 
new step begins where the previous step ends. The measured trajectory 
length is then denoted by L(tl), a quantity equal to the number of steps 
multiplied by the length scale t/. This approach was originally used by 
Richardson (see Ref. 1 ) in a study of the lengths of coastlines and ted to the 
conclusion 

L(tl)= A~ I - ~  (1) 

where A is a constant. The exponent D is now referred to as the fractal 
dimension and is directly measurable from a plot of log L(~/) vs. log tb For 
molecular trajectories D = 2. (~ 

It is entirely reasonable to expect that trajectories generated by com- 
puter simulation would correspond to the predicted D = 2. The recently 
reported(2 ) first direct measurement of D for molecular motion however 
yielded the value 1.65, a result impossible to reconcile with the diffusive 
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nature of molecular motion in fluids. The value of D was based on a 
molecular dynamics simulation of a t08-molecute Lennard-Jones liquid in 
which the trajectory of a single molecule was measured using the yardstick 
approach. A potential source of error in the analysis of the L(~t) data is 
trying to fit the results to (1) for values of r/too small to warrant such a fit; 
it will become clear below that this premature declaration of convergence 
to the limiting form (t)  is the reason for the incorrect D estimate. 

The simple scaling relationship (1) can only be expected to apply over 
a limited range of length scales. At small t/, L(q) approaches a limiting 
value that is the true distance moved by the molecule; this is in marked 
contrast to a typical coastline for which the scaled length is essentially 
unbounded as ~/~ 0. At the other extreme of large r/ the measurement 
process itself becomes meaningless for a finite trajectory since the yardstick 
length eventually exceeds the overall span of the trajectory. Between these 
two limits, and for a sufficiently long trajectory, there exists a range of r/ 
over which (1) should hold. The onset of self-similarity at low t/ 
corresponds to a changeover between the observation of ballistic and dif- 
fusive motion; no a pr ior i  indication exists of where this should occur, 
hence the need for sufficiently long trajectories to allow analysis of L(r/) 
over a wide range of r/. 

3. M E T H O D  

The trajectories whose ffactal dimension is to be determined are 
obtained from the molecular dynamics simulation of a hard-sphere fluid. 
The system consists of 1372 molecules of unit diameter, subject to periodic 
boundary conditions, and with the size of the unit cell chosen to produce 
the required density. Special computational techniques are needed in order 
to carry out the relatively time-consuming simulations efficiently. These 
techniques provide an algorithmic solution to the problems of determining 
future collisions among the spheres based on the dynamical state at a given 
instant, and establishing a temporal ordering of the large number of poten- 
tial future collisions. These issues wilt not be discussed further here since 
both a general survey of the subject (4~ and a detailed description of the par- 
ticular techniques employed in the present work (5~ are available elsewhere. 

The simulation is started with the molecules in a regular close-packed 
configuration, with initial velocities of unit magnitude and random direc- 
tion, and the system is allowed to evolve over a period of time adequate for 
equilibration to the fluid state. Subsequently, the motions of selected 
molecules are tracked as the system evolves in time, and the coordinates of 
each collision in which these molecules are involved recorded. The 
recording process takes into account any crossings of the periodic boun- 
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daries that occur and which are obviously involved in the trajectory length 
computations. Since the motion of a molecule between collisions is 
rectilinear, the collision history allows a complete reconstruction of the 
trajectory for later analysis. Energy is conserved over the course of the 
simulation. 

Trajectories that extended o v e r  10 4 collisions/molecule were found to 
be adequate for the analysis. To produce trajectories of this length the 
simulations had to cover a total of 7 x 1 0 6  collisions. The calculations were 
repeated for three values of reduced volume v (v and the number density 
are related by v = 21/2/p); the run details are summarized in Table I. The 
trajectories of 16 molecules were recorded during each run (in contrast to 
the single trajectory used in Ref. 2). 

The measurement of trajectory length using a yardstick (i.e., the 
dividers) of given length r/is carried out in the following manner. If r0 is the 
point on the trajectory path corresponding to the end of the previous 
measurement step (or the start of the trajectory if the initial step) then the 
immediate task is to locate both the linear segment of the path and the 
point on this segment where the measurement step will end. This entails a 
search of the current and possibly subsequent path segments; for a par- 
ticular segment of the path between the points r 1 and r~ a search is made 
for a point lying on the segment a distance r/from ro by solving 

II (1 - fl)  r l  +/~r2 - r o l l  = r/ ( 2 )  

for/?, subject to the restriction 0 ~</? ~ 1. If two solutions are found then 
the smaller is taken, if none then the particular segment is not directly 
involved in the length measurement; if ro itself lies on the segment r~ r2 then 
it replaces rl in (2). The small portion of the trajectory not included in the 
last complete measurement step is discarded; the length error introduced 

Reduced 
volume 
(v) 

Table I. Summary of the Molecular  Dynamics Runs. ~ 

i m ,  m , i  J,, ii i ,  

Simulated 
time Mean Mean -square 
(psec) free path displacement 

1.75 590 0.066 (0.071) 150 (136) 
2.0 840 0.095 (0.101) 441 (337) 
2.5 1390 0.160 (0.166) 1275 (1030) 

. . . . . . . . . . . . . . . .  iiiiiiiiiiiiiiL IIW JiJ JiiJiIW 

The mean free paths and mean-square displacements are measured in units of the hard- 
sphere diameter ( = 1); error estimates are given in parentheses. The time periods covered by 
the runs are also shown. 
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by this truncation cannot exceed q itself. The total number of measurement 
steps multiplied by t/ is an estimate of L(~/), with the final results being 
based on averages over all the trajectories. 

4. RESULTS 

The fact that the distribution of free-path lengths is practically density 
independent when scaled by the mean free-path length (6) suggests that the 
trajectory length measurements should be similarly scaled in order to 
isolate the effect of density on the "shape" of the trajectory (i.e., the 
v dependence of L). If 2 denotes the mean free-path (itself a function of v) 
and the reduced quantities L=L/;t and q=~//2 are defined, then (1) 
becomes 

g ( q )  = ,Tq ~ - '~  (3) 

where 

Any v dependence not covered by the variation in mean free path is now 
confined to the coefficient .~. 

Figure t shows the (natural) log-log graphs of L against q for the dif- 
ferent v, averaged over the individual trajectories. The linear portion of 
each graph should have gradient - 1 if D = 2, as is indeed the case. Error 
bars are omitted for clarity--see however (3) where the unreduced quantities 
are shown and error bars included. The spread of values of L(r/) over the 
different trajectories is not greatly influenced by the value of t/; the relative 
spread does of course increase with rl and the graphs terminate when this 
becomes significant. 

The three sets of data become superimposed as q--, 1; this is to be 
expected since the small-q limit of/-~ is simply the total number of collisions 
participating in the trajectory, The scaling behavior implied by (3) does not 
appear at a common value of q for the different v and the graphs do not 
coincide in the linear region indicating that A is explicitly v dependent. 
Estimates of # at which linearity first appears are by their nature subjective; 
the values suggested by the data are 23, 26, and 31 for v = t.75, 2.0, and 
2.5, respectively, i.e., the rate of approach to self-similarity drops with 
increasing v. 

The upper limit to r/for which meaningful estimates of L(r/) are to be 
expected is a value close to the r.m.s, displacement of the molecule over the 
course of the trajectory--the end-to-end distance of the path. The 
logarithm of the ratio (end-to-end distance)/2 follows from TaNe I and 
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Fig, 1. Log-log (natural) plot of scaled trajectory length L as a function of measurement 
scale length rl; both quantities have been divided by the mean free path length ~. Scaled 
lengths of random walks with constant ( � 9  and negative exponentially distributed (T) step 
sizes are also shown. The straight lines have gradient -. 1 and show the expected slope for 
D=2. 

equals 5.3-t-0.1 for the three values of v; this is essentially the value of tog fl 
at which the graphs  in Fig. 1 terminate  owing to lack of reliable scaled 
length estimates. 

The  present  s imulat ions are of  a dura t ion  sufficient to permit  
measurement  of  L(r/) for rl as large as 1502; the trajectories themselves 
extend over  1042, The earlier work  <2) on the other  hand  involved trajec- 
tories of approx imate  length 500)~ with a corresponding reduct ion in the 
upper  limit of  r/. Given  that  the onset of self-similarity occurs in the 
ne ighborhood  of r /=  25)4, it is clear tha t  the limiting linear region of L 
could not  be p robed  in depth and hence an er roneous  D was obtained.  

The  fact that  different models  are used in the two simulat ions should 
have no bear ing on the conclusions. I t  has been shown (6) tha t  the free-path 
distr ibution in a hard-sphere  fluid is unaffected by the addi t ion of a square- 
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well potential. Since there is no reason that the trajectories of the square- 
well and Lennard-Jones fluids should differ in any essential way, because in 
both cases the molecular motion is governed by a diffusive mechanism, the 
value of D should be the same for both models. 

A further consequence of Fig. 1 is that there is clearly more density 
dependence in the nature of the trajectory than is implied by the fact that 
the free-path distributions are essentially independent of density when 
scaled by 2. (6~ On the other hand this may not come as such a surprise 
since the velocity autocorrelation function undergoes a qualitative change 
for v near  2(7): at low v (high density) the short-time correlations are 
negative, a characteristic that disappears as v increases. In view of the close 
connection between the velocity autocorrelation and the diffusive motion, a 
more complex relationship between the trajectory "shape" and v exists; the 
free-path distribution itself is not a sufficiently sensitive indicator of this 
dependence. 

5. A N A L Y S I S  OF R A N D O M  W A L K S  

In order to determine whether the relatively slow approach to self- 
similarity observed in the case of molecular trajectories is also typical of 
random walks in general, an analysis similar to that described above was 
carried out for two kinds of random walk in the continuum. The first was a 
walk with constant unit step size, the second a walk with step size r deter- 
mined by the probability distribution P(r)=exp(-r). This negative 
exponential is a reasonably close approximation to the free-path dis- 
tribution in a hard-sphere fluid {6) when the path lengths are scaled by 2. 

For both kinds of walk 100 samples of 104 steps were generated and 
the scaled lengths measured as before. The resulting values for L(t/) are 
included in Fig. 1. 

The constant-step walk settles down to linear behavior relatively 
quickly and requires that ~/ be only approximately six times the step size. 
The convergence is considerably slower for the walk with exponentially dis- 
tributed step size where linearity requires that ~/ be at least 16 times the 
mean step size (itself equal to unity). The slower approach to self-similarity 
is a consequence of the need to smooth out the large fluctuations in step 
size inherent in the exponential distribution (for which the variance is also 
unity). Because of the similar distribution involved, the same explanation 
also applies to the molecular trajectories. It is also apparent that the 
exponential does not give a particularly good description of the trajectories 
insofar as L(t/) is concerned. This too is not unexpected given that neither 
the exponential, nor a more complicated functional form that treats 

822/40/5-6d0 
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collision statistics more carefully, are capable of fully accounting for the 
free-path distribution. ~6) 

Note Added: In this paper the emphasis is on how the trajectory 
lengths vary under change of measurement scale. A related but distinct 
problem concerns the effect of a change of time scale and, in particular, the 
question of whether, over macroscopic time scales, molecular motion 
retains its Brownian nature. ~8) I thank Professor J. L. Lebowitz for bringing 
this work to my attention. 
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